497 research outputs found

    Transcription-coupled eviction of histones H2A/H2B governs V(D)J recombination.

    Get PDF
    Initiation of V(D)J recombination critically relies on the formation of an accessible chromatin structure at recombination signal sequences (RSSs) but how this accessibility is generated is poorly understood. Immunoglobulin light-chain loci normally undergo recombination in pre-B cells. We show here that equipping (earlier) pro-B cells with the increased pre-B-cell levels of just one transcription factor, IRF4, triggers the entire cascade of events leading to premature light-chain recombination. We then used this finding to dissect the critical events that generate RSS accessibility and show that the chromatin modifications previously associated with recombination are insufficient. Instead, we establish that non-coding transcription triggers IgL RSS accessibility and find that the accessibility is transient. Transcription transiently evicts H2A/H2B dimers, releasing 35-40 bp of nucleosomal DNA, and we demonstrate that H2A/H2B loss can explain the RSS accessibility observed in vivo. We therefore propose that the transcription-mediated eviction of H2A/H2B dimers is an important mechanism that makes RSSs accessible for the initiation of recombination

    The feasibility of gene therapy in the treatment of head and neck cancer

    Get PDF
    Standard approach to the treatment of head and neck cancer include surgery, chemotherapy, and radiation. More recently, dramatic increases in our knowledge of the molecular and genetic basis of cancer combined with advances in technology have resulted in novel molecular therapies for this disease. In particular, gene therapy, which involves the transfer of genetic material to cells to produce a therapeutic effect, has become a promising approach. Clinical trials concerning gene therapy strategies in head and neck cancer as well as combination of these strategies with chemotherapy and radiation therapy will be discussed

    Advances in Antisense Oligonucleotide Development for Target Identification, Validation, and as Novel Therapeutics

    Get PDF
    Antisense oligonucleotides (As-ODNs) are single stranded, synthetically prepared strands of deoxynucleotide sequences, usually 18–21 nucleotides in length, complementary to the mRNA sequence of the target gene. As-ODNs are able to selectively bind cognate mRNA sequences by sequence-specific hybridization. This results in cleavage or disablement of the mRNA and, thus, inhibits the expression of the target gene. The specificity of the As approach is based on the probability that, in the human genome, any sequence longer than a minimal number of nucleotides (nt), 13 for RNA and 17 for DNA, normally occurs only once. The potential applications of As-ODNs are numerous because mRNA is ubiquitous and is more accessible to manipulation than DNA. With the publication of the human genome sequence, it has become theoretically possible to inhibit mRNA of almost any gene by As-ODNs, in order to get a better understanding of gene function, investigate its role in disease pathology and to study novel therapeutic targets for the diseases caused by dysregulated gene expression. The conceptual simplicity, the availability of gene sequence information from the human genome, the inexpensive availability of synthetic oligonucleotides and the possibility of rational drug design makes As-ODNs powerful tools for target identification, validation and therapeutic intervention. In this review we discuss the latest developments in antisense oligonucleotide design, delivery, pharmacokinetics and potential side effects, as well as its uses in target identification and validation, and finally focus on the current developments of antisense oligonucleotides in therapeutic intervention in various diseases

    Nanoparticles for Local Drug Delivery to the Oral Mucosa: Proof of Principle Studies

    Get PDF
    Purpose To determine if solid lipid nanoparticles represent a viable strategy for local delivery of poorly water soluble and unstable chemopreventive compounds to human oral tissues. Methods Nanoparticle uptake and compound retention evaluations employed monolayer-cultured human oral squamous cell carcinoma (OSCC) cell lines and normal human oral mucosal explants. Feasibility of nanoparticle delivery was also evaluated with respect to the presence of phase-III efflux transporters in normal oral mucosal tissue and OSCC tissues. Results Functional uptake assays confirmed significantly greater internalization of nanoparticle-delivered fluorescent probe relative to free-fluorescent probe delivery, while concurrently demonstrating nanoparticle uptake rate differences among the OSCC cell lines and the phagocytic control human monocyte cell line. Mucosal explants exhibited nanoparticle penetration and internalization in the spinous and basal epithelial layer

    Bcl-2 and β1-integrin predict survival in a tissue microarray of small cell lung cancer.

    Get PDF
    INTRODUCTION: Survival in small cell lung cancer (SCLC) is limited by the development of chemoresistance. Factors associated with chemoresistance in vitro have been difficult to validate in vivo. Both Bcl-2 and β(1)-integrin have been identified as in vitro chemoresistance factors in SCLC but their importance in patients remains uncertain. Tissue microarrays (TMAs) are useful to validate biomarkers but no large TMA exists for SCLC. We designed an SCLC TMA to study potential biomarkers of prognosis and then used it to clarify the role of both Bcl-2 and β(1)-integrin in SCLC. METHODS: A TMA was constructed consisting of 184 cases of SCLC and stained for expression of Bcl-2 and β(1)-integrin. The slides were scored and the role of the proteins in survival was determined using Cox regression analysis. A meta-analysis of the role of Bcl-2 expression in SCLC prognosis was performed based on published results. RESULTS: Both proteins were expressed at high levels in the SCLC cases. For Bcl-2 (n=140), the hazard ratio for death if the staining was weak in intensity was 0.55 (0.33-0.94, P=0.03) and for β(1)-integrin (n=151) was 0.60 (0.39-0.92, P=0.02). The meta-analysis showed an overall hazard ratio for low expression of Bcl-2 of 0.91(0.74-1.09). CONCLUSIONS: Both Bcl-2 and β(1)-integrin are independent prognostic factors in SCLC in this cohort although further validation is required to confirm their importance. A TMA of SCLC cases is feasible but challenging and an important tool for biomarker validation

    Expression of different survivin variants in gastric carcinomas: first clues to a role of survivin-2B in tumour progression

    Get PDF
    Survivin is a novel member of the inhibitor of apoptosis family and determines the susceptibility of tumour cells to pro-apoptotic stimuli. Recently, we identified two novel alternative splice variants of survivin, differing in their anti-apoptotic properties: whereas the anti-apoptotic potential of survivin-ΔEx3 is preserved, survivin-2B has lost its anti-apoptotic potential and may act as a naturally occurring antagonist of survivin. Because the in vivo expression of these alternative splice variants has not been explored so far, we analysed gastric carcinomas of different histological subtypes, grades and stages. Since no antibodies are currently available to determine the novel splice variants, quantitative reverse transcriptase polymerase chain reaction was performed, using RNA samples obtained from 30 different gastric carcinomas. Polymerase chain reactions products were quantified by densitometric evaluation. We found that all gastric carcinomas, irrespective of their histological types, grades or stages, express survivin-ΔEx3, survivin-2B and survivin, the latter being the dominant transcript. Comparing the disease stages I+II with III+IV, expression of survivin and survivin-ΔEx3 remained unchanged. In contrast, a significant (P=0.033) stage-dependent decrease in the expression of survivin-2B became evident. Our study demonstrates for the first time the expression of alternative splice variants in gastric carcinomas and provides a first clue to a role of survivin-2B in tumour progression
    corecore